万博体育全站(ManBetX)·英超狼队官方合作伙伴

2022年秋季先进机器人与人工智能系列学术讲座(第215期)

南开大学机器人与信息自动化研究所 天津市智能机器人技术重点实验室

Institute of Robotics and Automatic Information System

Tianjin Key Laboratory of Intelligent Robotics

2022年秋季先进机器人与人工智能系列学术讲座(第215期)

Seminar Series:Advanced Robotics & Artificial Intelligence

2022年12月7日(周三)    腾讯会议:622-448-550  入会密码:221207 


报告时间:2022127日(周三)上午10:00~11:30

报告题目:Neural-Control Family: Safe Agile Deep-learning-based Robotic Control in Dynamic Environments

报告嘉宾:石冠亚 助理教授

专家单位:卡内基梅隆大学机器人研究所

Abstract:

Recent breathtaking advances in machine learning beckon to their applications in a wide range of autonomous systems. However, for safety-critical settings such as agile robotic control in hazardous environments, we must confront several key challenges before widespread deployment. Most importantly, the learning system must interact with the rest of the autonomous system (e.g., highly nonlinear and non-stationary dynamics) in a way that safeguards against catastrophic failures with formal guarantees. In addition, from both computational and statistical standpoints, the learning system must incorporate prior knowledge for efficiency and generalizability.


In this talk, I will present progress towards establishing a unified framework that fundamentally connects learning and control. In particular, I will introduce a concrete example in such a unified framework called Neural-Control Family, a family of deep-learning-based nonlinear control methods with not only stability and robustness guarantees but also new capabilities in agile robotic control. For example, Neural-Swarm enables close-proximity flight of a drone swarm and Neural-Fly enables precise drone control in strong time-variant wind conditions.


报告人简介:

石冠亚博士(个人主页:Guanya Shi)于20228月从加州理工学院(Caltech)计算与数学科学系(CMS)控制与动力系统专业(CDS)获得博士学位,目前在华盛顿大学(University of Washington)计算机学院担任博士后研究员。他将于2023年秋季学期入职卡内基梅隆大学计算机学院机器人研究所担任助理教授。在此之前,他于2017年本科毕业于清华大学车辆与运载学院,并于2020年在英伟达担任访问研究员。他的学术兴趣是机器学习与控制理论的结合,以及在机器人控制与智能决策中的应用。他在Science RoboticsT-RONeurIPSICRAACCL4DC等机器人、机器学习、控制方面的期刊与会议发表论文二十余篇。他先后获得了加州理工学院Simoudis探索奖和Ben P.C. Chou博士论文奖,WAIC云帆奖,以及芝加哥大学数据科学明日之星奖。